Head Office: 2nd Floor, Grand Plaza, Fraser Road, Dak Bunglow, Patna - 01
JEE Main 2023 (Memory based)

30 January 2023 - Shift 1

Answer \& Solutions
CHEMISTRY

1. Caprolactam when heated at high temperature gives
A. Nylon 6,6
B. Dacron
C. Teflon
D. Nylon 6

Answer (D)

Solution:

Caprolactam on heated at high temperature gives Nylon 6 polymer

2. Molarity of CO_{2} in soft drink is 0.01 M . The volume of soft drink is 300 mL . Mass of CO_{2} in soft drink is
A. $\quad 0.132 \mathrm{~g}$
B. 0.481 g
C. 0.312 g
D. 0.190 g

Answer (A)
Solution:
Molarity $=\frac{\text { moles of solute }}{\operatorname{Volume}(L)}=\frac{\text { millimoles }}{\operatorname{Volume}(m L)}$
millimoles $=$ MV (mL)
millimoles of $\mathrm{CO}_{2}=0.01 \times 300=3$ or moles of $\mathrm{CO}_{2}=3 \times 10^{-3}$
Mass of $\mathrm{CO}_{2}=$ moles \times Mol.wt

$$
\begin{aligned}
& =3 \times 10^{-3} \times 44 \\
& =132 \times 10^{-3} \mathrm{~g}
\end{aligned}
$$

Mass of $\mathrm{CO}_{2}=0.132 \mathrm{~g}$
3. During the qualitative analysis of $\mathrm{SO}_{3}{ }^{2-}$ using acidified $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{SO}_{2}$ gas evolved which turns $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution
A. Green
B. Black
C. Blue
D. Red

Answer (A)

Solution:

Orange of dichromate solution $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ converts to green Cr^{3+}
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+2 \mathrm{SO}_{3}^{2-}+8 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+2 \mathrm{SO}_{4}^{2-}+4 \mathrm{H}_{2} \mathrm{O}$
4. Shape of OF_{2} molecule is
A. Bent
B. Linear
C. Tetrahedral
D. T- Shaped

Answer (A)

Solution:

It is sp^{3} hybridized therefore it's shape will be Bent or V - Shaped
5. Which of the following option contains correct match:

List -I (Reactions)	List - II (Products)
A. Wurtz	
B. Fittig	Q.
C. Wurtz Fittig	
D. Sandmeyer	

A. $A-Q, B-P, C-R, D-S$
B. $A-P, B-Q, C-R, D-S$
C. $A-S, B-R, C-Q, D-P$
D. $A-R, B-S, C-P, D-Q$

Answer (A)

Solution:

The correct matches are
A. Wurtz reaction

$$
2 \mathrm{R}-\mathrm{X}+2 \mathrm{Na} \xrightarrow{\text { Dry ether }} \mathrm{R}-\mathrm{R}+2 \mathrm{NaX}
$$

B. Fittig reaction

C. Wurtz-Fittig reaction

D. Sandmeyer reaction

6. For a given cell at T K ,
$\mathrm{Pt} / \mathrm{H}_{2}(\mathrm{~g}) / \mathrm{H}^{+} / / \mathrm{Fe}^{3+} / \mathrm{Fe}^{2+} / \mathrm{Pt}$
(1 bar) (1 M)
E cell $=0.712 \mathrm{~V}$
E^{0} cell $=0.770 \mathrm{~V}$
If $\frac{\left[F e^{2+}\right]}{\left[F e^{3+}\right]}$ is $t\left(\frac{2.303 R T}{F}=0.058\right)$
Find $\left(\frac{t}{5}\right)$

Answer (2)

Solution:

$$
\begin{aligned}
& 0.712=0.770-\frac{0.058}{2} \log \left(\frac{F e^{2+}}{F e^{3+}}\right)^{2} \\
& -0.058=-0.058 \log \frac{\left[F e^{2+}\right]}{\left[F e^{3+}\right]} \\
& \frac{F e^{2+}}{F e^{3+}}=10=t \\
& \frac{t}{5}=2
\end{aligned}
$$

7. How many moles of electrons are required to reduce 1 mole of permanganate ions into manganese dioxide

Answer (3)

n-factor $=3$
Therefore, 3 moles of electrons are required.
8. 600 mL of 0.04 M HCl is mixed with 400 mL of $0.02 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. Find the pH of the resulting solution.

Solution:

moles of H^{+}from $\mathrm{HCl}=0.04 \times 600$

$$
=24 \mathrm{~mol}
$$

moles of H^{+}from $\mathrm{H}_{2} \mathrm{SO}_{4}=0.02 \times 2 \times 400$

$$
=16 \mathrm{~mol}
$$

Total moles of $\mathrm{H}^{+}=24+16=40 \mathrm{~mol}$
Final volume of solution $=1000 \mathrm{~mL}$
$\left[\mathrm{H}^{+}\right]=\frac{40}{1000}=0.04 \mathrm{M}$
$\mathrm{pH}=-\log (0.04)=1.4$
9. A solution of 2 g of a solute and 20 g water has boiling point 373.52 K . Then find the molecular mass of solute? [Given: $\mathrm{Kb}=0.52 \mathrm{~K} \mathrm{~kg} / \mathrm{mole}$ and solute is non-electrolyte]

Answer (100)

Solution:

$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$
$0.52=0.52 \times \frac{2 / M}{0.02}(\mathrm{M}$ indicates molecular mass of solute)
$\mathrm{M}=100 \mathrm{~g}$
10. Consider the following reactions:

The Product P and Q respectively are?
A.

B.

C.

D. HCOOH and

Answer (B)

Solution:

11. Assertion: ketos gives seliwanoff test

Reason: ketos undergoes β - elimination to form furfural
A. Assertion and reason both are correct and reason is the correct explanation of assertion
B. Assertion and reason both are correct but reason is not the correct explanation of assertion
C. Assertion is correct and reason is incorrect
D. Assertion is incorrect but reason is correct

Answer (A)

Solution:

Seliwanoff's reagent is a mixture of resorcinol and concentrated hydrochloric acid. This test distinguishes ketoses like fructose from other sugars, because in this test, only ketose sugars can produce the furfurals which form colored complexes with resorcinol.
12. The role of SiO_{2} in Cu extraction is:
A. Converts FeO to FeSiO_{3}
B. Converts CaO to CaSiO_{3}
C. Reduces $\mathrm{C} u_{2} S$ to Cu
D. None of these

Answer (A)

Solution:

SiO_{2} behaves as flux and reacts with impurity (FeO) to form slag $\left(\mathrm{FeSiO}_{3}\right)$
$\mathrm{FeO}+\mathrm{SiO}_{2} \rightarrow \mathrm{FeSiO}_{3}$.
13. Which of the following compound is used as antacid?
A. Ranitidine
B. Prontosil
C. Norethindrone
D. Codeine

Solution:

Ranitidine is used as an antacid
14. Consider the following molecule

Select the correct order of the acidic strength
A. $\mathrm{H}_{\mathrm{A}}>\mathrm{H}_{\mathrm{D}}>\mathrm{H}_{\mathrm{B}}>\mathrm{H}_{\mathrm{C}}$
B. $\mathrm{H}_{\mathrm{B}}>\mathrm{H}_{\mathrm{A}}>\mathrm{H}_{\mathrm{D}}>\mathrm{H}_{\mathrm{C}}$
C. $\mathrm{H}_{\mathrm{A}}>\mathrm{H}_{\mathrm{B}}>\mathrm{H}_{\mathrm{C}}>\mathrm{H}_{\mathrm{D}}$
D. $\mathrm{H}_{\mathrm{C}}>\mathrm{H}_{\mathrm{B}}>\mathrm{H}_{\mathrm{D}}>\mathrm{H}_{\mathrm{A}}$

Answer (A)

Solution:

Acidic strength a Stability of conjugate base
Therefore,
The correct order of acidic strength $\mathrm{H}_{\mathrm{A}}>\mathrm{H}_{\mathrm{D}}>\mathrm{H}_{\mathrm{B}}>\mathrm{H}_{\mathrm{C}}$
15. Arrange the following ligands according to their increasing order of field strength $\mathrm{S}^{2-}, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}, \mathrm{NH}_{3}$, en, CO
A. $\mathrm{S}^{2-}<\mathrm{CO}<\mathrm{NH}_{3}<e n<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
B. $S^{2-}<N H_{3}<e n<\mathrm{CO}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
C. $S^{2-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{NH}_{3}<e n<\mathrm{CO}$
D. $\mathrm{CO}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{NH}_{3}<e n<\mathrm{S}^{2-}$

Answer (C)

Solution:

The correct order of field strength as per the spectrochemical series is $S^{2-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{NH}_{3}<e n<\mathrm{CO}$
16. If volume of ideal gas is increased isothermally than its internal energy
A. Increases
B. Remains constant
C. Decreases
D. Can be increased or decreased

Answer (B)

Solution:

$\Delta U=n C_{v} \Delta T$
And for an isothermal process $\Delta T=0$
Therefore,
For isothermal expansion of ideal gas $\Delta U=0$
17. For first order kinetic rate constant $2.011 \times 10^{-3} \mathrm{sec}^{-1}$. The time taken for the decomposition of substance from 7 g to 2 g will be:
(Use $\log 7=0.845$ and $\log 2=0.301$)
Answer (623)

Solution:

$\mathrm{A} \rightarrow$ products
Initial moles of $A=\frac{7}{M}$ (M is molar mass of A)
Final moles of $\mathrm{A}=\frac{2}{M}$
Rate constant $\mathrm{k}=2.011 \times 10^{-3} s^{-1}$
For a first order reaction
$t=\frac{2.303}{k} \log _{\frac{7}{2}}$
$=\frac{2.303}{2.011} \times 10^{-3}[0.845-0.301]$
$=623 \mathrm{sec}$
18. Consider the following reactions
$\mathrm{NO}_{2} \xrightarrow{U V} A+B$
$A+O_{2} \rightarrow C$
$\mathrm{B}+\mathrm{C} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$
A, B and C respectively are
A. $O, N O, O_{3}$
B. $N O, O, O_{3}$
C. $N O, O_{3}, O$
D. $O_{3}, O, N O$

Answer (A)

Solution:

$\mathrm{NO}_{2} \xrightarrow{U V} \mathrm{NO}+\mathrm{O}$
(B) (A)
$O+O_{2} \rightarrow O_{3}$
(C)
$\mathrm{NO}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$
19. No. of lone pairs of central atoms are given.

Match the following.

Column 1	Column 2
A. IF_{7}	P. 0
B. $\mathrm{ICl}_{4}-$	Q. 1
C. XeF_{2}	R. 2
D. XeF_{6}	S. 3

$A-P, B-Q, C-R, D-S$
E. $A-P, B-R, C-S, D-Q$
F. $A-R, B-S, C-P, D-Q$
G. $A-S, B-R, C-Q, D-P$

Answer (B)

Solution:

$L . P=0$

L. $\mathrm{P}=1$

$L . P=2$
20. Which one of the following is water soluble?
a. BeSO_{4}
b. MgSO_{4}
c. CaSO_{4}
d. SrSO_{4}
e. BaSO_{4}
A. Only a \& b
B. Only a, b, c
C. Only d \& e
D. Only a \& e

Answer (A)

Solution:

Solubility of sulphates of group-2 elements decreases down the group. BeSO_{4} and MgSO_{4} are appreciably soluble in water. $\mathrm{CaSO}_{4}, \mathrm{SrSO}_{4}$ and BaSO_{4} are practically insoluble in water.
21. Inhibitor of cancer growth
A. Cis-platin
B. EDTA
C. Cobalt
D. Ethanol 1, 2-diamine

Answer (A)

Solution:

Cis-platin acts as an anticancer agent.

22. Speed of e^{-}in $7^{\text {th }}$ orbit is $3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$, then find the speed in $3^{\text {rd }}$ orbit.
A. $3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$
B. $8.4 \times 10^{6} \mathrm{~m} / \mathrm{s}$
C. $7.5 \times 10^{6} \mathrm{~m} / \mathrm{s}$
D. $1.8 \times 10^{6} \mathrm{~m} / \mathrm{s}$

Answer (B)

Solution:

Speed of electron in $\mathrm{n}^{\text {th }}$ orbit of a Bohr atom is given by
$v_{n}=\left(v_{1}\right)_{H} \times \frac{z}{n}$
If $\mathrm{n}=7$
$v_{7}=\left(v_{1}\right)_{H} \times \frac{z}{n}=3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$
$\Rightarrow\left(v_{1}\right)_{H} \times Z=3.6 \times 10^{6} \times 7 \rightarrow \mathrm{Eq}-1$
If $\mathrm{n}=3$
$v_{3}=\left(v_{1}\right)_{H} \times \frac{z}{3}$
Putting value of $\left(v_{1}\right)_{H} \times Z$ from Eq-1

$$
\begin{aligned}
& =\frac{7 \times 3.6 \times 10^{6}}{3} \\
& =8.4 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

23. Match the following.

Atomic no	Group
i. 52	P.s
ii. 37	Q.p
iii. 65	R. f
iv. 74	S.d

A. (i) $-Q$, (ii) $-P$, (iii) $-R$, (iv) $-S$
B. (i) $-Q$, (ii) $-P$, (iii) $-S$, (iv) $-R$
C. (i) $-S$, (ii) $-R$, (iii) $-P$, (iv) $-Q$
D. (i) $-R$, (ii) $-P$, (iii) $-Q$, (iv) $-S$

Answer (B)

Solution:

f-block elements \longrightarrow Lanthanoids $=57-71$
65: f-block
37: $[K r] 5 s^{1} \rightarrow s-b l o c k$
52: $[K r] 5 s^{2} 4 d^{10} 5 p^{4} \rightarrow p-$ block
74: $[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{4} \rightarrow d-$ block

